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Abstract. For a given coloured solution R ( h ,  p )  of the (quantum) Yam-Baxter equation 
in appropriate farm, we present an explicit prescription to generate trigonometric solutions 
R ( A ,  p; x) ofthe Yang-Baxter equation with spectral parameten L When the given R ( A ,  p )  
admits the Biman-Wenzl algebraic structure with MIOUT, we find that two types of the 
R(A, p; x) are generated by such R ( h ,  p) .  New explicit examples associated with the 
fundamental representations of A,, B,,, C, and D, are given in terms of this prescription. 

1. Introduction 

It is well known that the (quantum) Yang-Baxter equation (YBE) plays a fundamental 
role in the theory of (1 + 1)- or 2-dimensional integrable quantum systems [l, 21, 
including lattice statistical models and nonlinear field theory (for review, see [4]), and 
is also closely related to some other fields, such as the quantum group (QP) [S, 61, knot 
theory (for the relationship between statistical models and knot theory, see [3]) and 
conformal field theory [7], etc, in both mathematics and physics. 

A solution of the YBE 

R12(x)R23(~)Rt2(y) = d23(y)R12(xy)d23(x) (1.1) 
contains two parameters. One is q =ek, where h is the Planck constant, and the other 
is the spectral parameter x =e-". Many solutions of the YBE (1.1) have been constructed 
systematically in terms of the following methods: one is that the R(x)-matrix can be 
generated from the classical R-matrix based on the QP [6]; another is the explicit 
prescription for Yang-Baxterization by starting from the braid group representation 
(BGR) [8,91. 
On the other hand, another form of the YBE can be written as follows 

212(A,  P ) & ~ ( A ,  v ) f i 1 2 ( ~ ,  U) = &(P, v)R12(A3 v)R23(& P )  (1.2) 
where d ( A , p )  is a matrix acting on the tensor space V ( A ) O V ( p ) .  We need only 
consider the casethat R ( A ,  f i )  is not equal to ~ ( A v - ' ) ,  because the YBE (1.2) is reduced 
to the YBE (1.1) by taking x=Ap-l and y = p v "  when d(A ,w)=R(Ap- ' ) .  Recently, 
Murakami [ 101 has found a (4 x 4)-dimensional solution of the YBE (1.2) and construc- 
ted a multivariable Alexander polynomial in terms of this solution. The parameters A, 
p and v appearing in the YBE (1.2) are interpreted as colours [lo]. In our previous 
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work [It]  we have found two types of solution associated with the fundamental 
representation of A , ,  based on weight conservation. The solution given by Murakami 
is a special case of the latter solution in [ l l ] .  The R(h,p)-matrices associated with 
the fundamental representations of A,  ( n  > 1).  B., C. and D. have been obtained, 
and the Birman-Wenzl (BW) algebra with colour has been constructed in [U]. It is 
shown that the &?(A, p)-matrices for B., C. and D. admit this algebraic structure. 

kid& fi; x)Rn(A, U ;  X Y ) R i z ( p L ,  U; Y ) =  Rdp, U; y)Riz(A, U; xy)Rz3(A, P ;  x). (1.3) 
The YBE (1.1) and the YBE (1.2) can be regarded as the limits of the VBE (1.3) by taking 
A = @ = U and x = y = 0, respectively. 

In consideration of the difficulty solving the YBE (1.3) directly, in this paper we 
construct an explicit prescription, called Yang-Baxterization of coloured R-matrix, to 
generate the R(A, p; x)-matrix from a given R ( A ,  p)-matrix in appropriate form. In 
fact, this prescription is the generalization of the prescription for Yang-Baxterization 
in [SI. 

In [SI, the &x) can be represented by the BGR and the unit matrix. The form of 
the d ( x )  depends on the reduction relation satisfied by the BGR. For instance, the 
R(x)-matrices corresponding to the BGR S with two and three distinct eigenvalues 
have the following forms 

and 
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The most general YBE has the following form: 

R(x) = A,xs-'+ A;*S ( 1.4) 

R(x) = A,x(x- l)S-'+h~'A~'(A,+A~)(A~+A~)I-A~'(x- 1)s (1 .5)  
respectively. In the latter formula, S needs to satisfy the condition (3.27) given in [SI. 
The correctness of this condition can be proved when S admits the BW algebraic 
structure [9]. 

In this paper we start from &(A, p )  instead of S. In terms of the k(A, p)-matrix 
in appropriate form, we construct the explicit forms of the &A, p; x)-matrix, which 
are similar to the formulae (1.4) and (1.5). We find that two solutions of the YBE (1.3) 
are generated from one R ( A , p )  satisfying the BW algebra with colour. The new 
R ( A ,  p;  x)-matrices are obtained by starting from d(A, p)  associated with the funda- 
mental representations of A,, B,, C. and 4. 

This paper is organized as follows. We Erst discuss the prescription for Yang- 
Baxterization of coloured d-matrix in section 2. Then the relationship between this 
prescription and the BW algebra with colour is shown in section 3. In section 4, the 
R ( A ,  p; x)-matrices for A., B,,, C. and 0, are given as examples. 
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Besides & ( A ,  p) we introduce the matrix I (A ,  p) satisfying the following relations: 

m, m p .  A )  = W, A ) =  I ( P ,  P )  = I 
(2.2) 

I i 2 ( A 9  p ) I z 3 ( A 3  v)Iiz(pL, v) = IZ~(& v)Iiz(A, v ) I d A ,  v) 

where I is the unit matrix. 
In order to construct R ( A ,  p; x), we need other relations satisfied by R ( A ,  p)  besides 

equations (2.1) and (2.2). For simplicity, we will restrict our discussion to the R ( A ,  A ) -  
matrix satisfying the following relations 

R ( A ,  A)=(A,+Az)I-A,h~R-' (A,A)  (2.3) 

or 

where Ai (i  = 1,2 or 1,2, 3) are the distinct eigenvalues of the R ( A ,  A)-matrix. 

condition in [SI, we assume that the R ( A ,  p; x)-matrix satisfies the conditions: 
By generalizing the boundary condition, the initial condition and the unitary 

(1) the boundary condition 

R ( A , I L ; O ) K & A , P )  &(A,  p; oO)oCk-'(p, A )  (2.5) 

& A , P ;  l)SI(A,pLL) (2.6) 

d( A, p; x)d(p ,  A ;  x-') OC I. 

(2) the initial condition 

(3) the unitarity condition: 

(2.7) 

In the following we construct the explicit forms of R ( A ,  p; x). Because these forms 
depend on the relations (2.3) and (2.4), we will discuss them in two cases. 

Case (i). In the case of equation (2.3) satisfied by &(A, A) ,  we assume that R ( A ,  p)  
satisfies the relation 

,(2.8) 

P(A, A )  = A ,  +Az a ( A ,  A )  = A,A2 (2.9) 

(2.10) 

d(A, P ) = P ( A ,  pL)I(& P )  -a(A, P ) ~ - ' ( P ,  A )  

where 

and we construct R ( A ,  p; x)  in the form 

@A, v; x) =&(A, P)XR- ' (P ,  A)ff , (A,  p)R(A,  P )  

wheref;(A, p)( i = 1,2) are the determined parameters. It is obvious that equation (2.10) 
satisfies the boundary condition equation (2.5). By using equation (2.8) the initial 
condition equation (2.6) gives 

fi(h,p)-a(A,pL)f2(h,pL)=O. (2.11) 

It is easy to verify that equation (2.10) satisfies the unitarity condition equation (2.7) 
in terms of equations (2.8) and (2.11). By takingf,=f; f ( A , p )  is an arbitrary scalar 
function, we rewrite equation (2.12) as follows 

R(A, P ;  x) = f ( 4  P ) ( ~ ( A ,  P ) X R - ' ( P ,  A ) - R ( A ,  P)). (2.12) 



284 MO-Lin Ge and Kang Xue 

Substituting equation (2.12) into the YBE (1.3), we find that k (A ,p )  should be 
satisfied by the relation 

a(A, P ) ~ ( P ,  ~ ) ( R ; ; ( P ,  A)R23(A,  v)R;i(v ,  ~ ) - R i i ( v ,  p)Ri2(A,  v)fi;;(pL, A)) 
+ a(A,  v)(d12(A, p)dF::(v, A)kiAp, v )  

- R 2 3 ( &  v)d;i(v, A)R23(A,  v ) ) = o  (2.13) 
where equations (1.2) and (2.1) have been used. By substituting equation (2.8) into 
the latter equation in (2.2) and using the YBE (1.2) and equation (2.1), it is not difficult 
to prove that equation (2.13) is an identity. 

Case (ii). The case of the d(A, A )  having the three distinct eigenvalues. For simplicity, 
we only consider the case that the eigenvalues of R ( A ,  A )  is independent of A. We 
assume that R ( A ,  p)  and [(A, ,U) satisfy the following relations: 

d12(A, p)rdA, v ) 1 1 2 ( ~ ,  U )  = 11dL p)123(A3 v)R12(pL, L,) 
(2.14) r2~(% v ) r l 2 ( ~ ,  &23(& P )  = R 2 3 h  d r l 2 ( ~ .  ~ ) G ~ ( A ,  PI. 

From equations (2.2) and (2.14) it is easy to derive 

and 
10, P)&, A) = R(A, d r b ,  A) (2.15) 

(2.16) 

R ( A ,  P)R(P,  A)=( il & ) R ( A ,  P ) ~ ( P ,  A) -( ij l M j ) I + (  il . b ) d - ' ( ~ ,  A ) r ( p ,  A). 
(2.17) 

Consider the boundary condition equation (2.5) and the initial condition equation 
(2.6). We construct k(A, w ;  x) in the form 

From the unitarity condition equation (2.7) the relationship among the determined 
coefficients A, B and C can be described in three ways: 
Case (a) C = -h;'.4;'A 

R ( A ,  p; x) = A x ( x -  l)R-'(p, A)+Bxl (A ,  p)+  C(X- l)R(A, p). (2.18) 

B =  n A:' (A+AX)(A2+A3)A (2.19) 

C=-A-'  2 A3 - I  A 
(,l' 1 
(;l, 1 

Case (b) 

B =  n A;' (A,+A2)(Al+A3)A (2.20) 

Case (c) C = -A;'A;'A 

(2.21) 
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In the derivation of equations (2.19)-(2.21), equations (2.15) and (2.17) have been 
used. It is easy to see that case (b) and case (c) can be obtained by exchanging, 
respectively, Al-Az and Az*A; from case (a). So we only need to consider case (a). 

Under case (a), by choosing A = A l ,  equation (2.18) reads 

R ( A ,  p; X) =A,x(x-  l)&'(p, A)+QxI(A ,  p) -A;'(x- l)R(A, p)  (2.22) 

where 

Q=n-l 2 A3 - 1  ( A , + A J ( A , + A J .  (2.23) 

Substituting equation (2.22) into the YBE (1.3) and using equations (1.2), (2.1), (2.2) 
and (2.14)-(2.17), after a lengthy calculation we derive the condition for R ( A ,  p; x) 
to satisfy the YEIE (1.3) as follows: 

& I F , ( & )  - A ~ F ~ ( R )  - Q(F, (R)  - A ~ F ~ ( R ) + A ~ F ~ ( R ) )  = o (2.24) 

where 

FdR) = R,z (A,  d&3Yv9 A ) R I Z b ,  v ) -R , (p ,  v ) G ( v ,  A)kz;(A, P )  

&(k)=&F;b, A)k23(A3 v ) R z ( v ,  p ) - R ; i ( v ,  p)R12(A, v)f i i i (p ,  A) 

FdR) = ( 2 1 2 ( A ,  p)RGi(v, A) -&;(P, A)R23(A? v))Iiz(p, v )  
(2.25) 

+ I i d A ,  p)(R;i(v, A ) R I Z ( P ,  ~ ) - & 3 ( h ,  v)RFi(v, p) )  

FdR) = R d A ,  p)L;(A. ~ ) I I Z ( W ,  V)-123(& ~ ) I I ~ ( A ,  v ) R d A ,  P )  

FdR)=R;;(pL, A ) I z ( A ,  v)Ii2(A3 v)-Iz3(pL, v)Iiz(A, v ) R i : ( ~ ,  A). 

In general we cannot prove directly the condition (2.23) based on the YBE (1.2), 
equations (2.2) and (2.14). However, we are able to prove its validity when d(A, p) 
admits the BW algebraic structure with colour. This will be shown in section 3. If one 
does not know whether the starting R ( A ,  p)  satisfies the BW algebra with colour or 
not, then one needs to check equation (2.23) for k(A, p)  or the YBE (1.3) for R ( A ,  p; x) 
given by equation (2.21). 

3. Relationship between the BW algebra with colour and the Yang-Baxterization 

It has been shown in section 2 that the correctness of the formula (2.21) depends on 
the condition (2.23). In this section, we will prove that equation (2.23) is the identity 
if R ( A ,  p )  satisfies the BW algebra with colour. 

The BW algebra with colour is generated by the operators Gj(A, p),  &(A, p )  and 
Ej(A, p), and depends on two parameters m and I which are independent of the colours 
[ 121. The algebraic relations among these operators have been given by equations 
(4.1)-(4.4) in 1121. The linear representations Ai(A, p )  (stand for G,(A, p) ,  I , (& p) and 
Ej(A,  p))  on the tensor space OfE, V(Ai)  can be written in the form 

A j ( A , p ) = I ( A j ) @ .  "@I(Aj-i)@A(A, p)@l(Aj+2)@. .@l(A, )  (3.1) 

where A(A, p) is a matrix: V(A)@ V(p)+ V ( p ) @  V(A), and I ( A j ) ( j  = 1 , .  . . , n )  are 
the unit matrices denoted by the colours Aj. 
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For the convenience of the following discussion we list some relations given in 
[12] as follows: 

E h  EL) = m-'(G(A, p)+ G-'(p ,  A)) -10, P )  (3.2) 

G(A, p ) G ( p ,  A )  = ( ( m +  l-')G(A, p )+ l - 'G- ' (p ,  A)) I (p ,  A ) - ( 1  + ml-')I (3.3) 

G I Z ( ~  p)Gz3(k ~ ) G I z ( K  v )  = Gz3(pL. v)Giz(hr v)Gz3(Ar P )  (3.4) 

EdAr ~ ) & 3 ( 4  ~)GIz(P, U )  EIZ(& P ) G Z ( ~ ,  A)112(~, v )  (3.5) 

G~>(cL,  ~ ) E I z ( ~ ,  u)E23(h? P )  = IZ3(k v)G;i(v, A)E23(A, P )  (3.6) 

EII(A,  p)E23(A, ~ ) G ; ; ( P ,  v )  EIZ(& /*)G23(& Y)II*(IL~ U )  (3.7) 

G;i(v, PL)EIz(A, v)&(A, P ) = L ~ ( P ,  ~ ) G I z ( A ,  v)&(A, P )  (3.8) 
where I(A, p)  still satisfies equation (2.2) ( R ( A ,  p) -* G(A, p)). 

(3.4) and (2 .3 ,  we obtain 
Substituting equation (3.2) into equations (3.5)-(3.8) and using equations (3.3), 

F,(G)  - m(F3(G) + l-'F4(G) t (m + l - ' )F5(G))  = O  (3.9) 
and 

F2(G) + m(F3(G) - ( m  t [)F4(G) - lF,(G)) = O .  (3.10) 

Setting 
m = ( A ~ A ~ ) - ~ ~ ~ ( , % + A J  

(3.11) 

we find that equation (3.3) is in accordance with equation (2.8). In this case equations 
(3.9) and (3.10) lead to 

A;'Fi(R) - p i F z ( R )  -pz(F3(R) -p ; 'F , (d )+p ,F , (R) )  = 0 (3.12) 

GO, P )  = (AIAz)-'"~(A, P )  
I- '= ( A ~ A ~ ) - ~ / ~ A ~  

where p, ( j  = 1,2,3)  are given by 
P I = A I  P 2 =  (AzA~)-I(AI+ Az)(&+A3) PX A2 (3.13) 

or 
P I = . ~ Z  p z  = (~41j~3)- ' ( ,~ i+A2)(AI  +A3) P ~ = A I .  (3.14) 

Since equations (3.12) and (3.13) are the same as equation (2.23), so we have proved 
the correctness of the formula (2.21). Equations (3.12) and (3.14) show that there exists 
another solution of the YBE (1.3). This solution can be given by exchanging A 
from the formula (2.21). 

4. Examples 

4.1. Fundamental representation of A, 
In terms of the weight conservation, the R ( A ,  p)-matrices have 
One solution is 

een calculated in 

+A2 

111. 
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where w = q - q - ‘  and a(A), g(A) are arbitrary functions of A. The eigenvalues of 
R d A ,  A )  are given by 

hi=q AZ = -4-1. (4.2) 

a(4 P )  =AtAz P ( &  = AI +Az (4.3) 

From equations (2.2) and (2.8) we find that 

and 

where X ( A ) ,  Y ( h )  are arbitrary functions of A and W(A, p )  satisfies the relation 

W A ,  p)  W w ,  v )  = ( 4  - q - ’ x ( p )  Y ( P ) )  W A ,  v). (4.7) 

A i = q  A Z = - q - l X ( h ) Y ( h )  (4.8) 
in which A2 depends on A. By solving equations (2.2) and (2.8) we find two solutions 
of n(A, p) ,  I (A,  p )  as follows 

The eigenvalues of the @ ( A ,  A )  are given by 

a(& v) = X ( Q  Y ( P )  



(4.10) 

(4.11) 

(4.13) 
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with U, = q or U, E q, -4-l. It is not difficult to find that the eigenvalues of the R(h,  A), 
a(A, p)  and P(A, p)  are the same as those given by equations (4.2) and (4.3). The 
corresponding I ( A ,  p )  is obtained as follows 

(4.15) -I - I  ( q b )  I(h,p)=Zg.(h)gi'(P)e..@e..+ ( q - q  ) W (A,P)eaa@ebb. 
a o # b  

Then we have 

R h p ;  x ) = ~ ( A . E I ) [ C  (U,-u,'X)g=(h)g.'(pL)e=.@e.. 

(4.16) 

4.3. Fundamental representations of B., C., Dn 
for B. 

for 0.. 
A i = q  A2=-q- l  for C, (4.17) 

The R ( A , p )  can be computed in terms of the weight conservation [12]. We rewrite 
them in the form 

where 

N = 2 n +  1,211 
2 

+1,. . . , 
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where 
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(2.24) 

5. Conclusion and discussion 

In this paper, starting from the given k(A, p)  in appropriate form, we present the 
prescription for Yang-Baxterization of coloured 2-matrix to generate trigonometic 
solutions of the YBE (1.3). The structure of the R(A, p) depends on reduction relations 
satisfied by the R ( A ,  p). The reduction relation should be reduced to the characteristic 
equation for d(A, A )  when A = p. For simplicity, we only consider the cases of the 
d(A, A )  having two and three distinct eigenvalues. When three distinct eigenvalues are 
independent of A, we find that this prescription is related to the BW algebra with colour 
and two solutions are generated from the d(A, p)  satisfying the BW algebra with colour. 
If three distinct eigenvalues depend on A, the discussion given in section 2 is not 
correct. We need to construct a new form for R ( A ,  p; x) instead of equation (2.18). 

We would like to point out that the R ( A , p )  can be represented by 'coloured 
projector' Pk(A, p)  as follows: 

m 

d-'(A, CL)= 1 &'(A, P)Pk(EL, A )  (5.2) 

where Ak(A, p) are the determining coefficients satisfying A k ( A .  p)  = Ak(p,  A) .  When 
A = p, &(A, p)  will be reduced to the distinct eigenvalues of R(A, A ) .  Pk(A, p) are 
defined by 

k = l  

Pk(& P)P,(P, A ) = & ! P k ( A ,  p)r(p,A\)=Sklr(h,p)Pk(CL. A )  

r ( A ,  P)r(P,  A )  = I(A, A )  = I. 

(5.3) 
where I ( A ,  p) satisfies 
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Considering the relation Ph(A, p )  = I(A, p) ,  we have 

fi (R(A\,pL)I(HA)-Ah(A.p))=0. (5.4) 
h=1 

In terms of equations (5.1), (5.3) and (5.4), we can express the Pk(A, p )  as 

By generalizing the method given in [SI we can construct 
m 

R(A, P ;  X)  = &(A, P; x ) P h ( A ,  P )  
h=l  

where 

According to this consideration, we can also write the k ( A , p ; x )  in the form of 
equations (2.10) and (2.18) for m = 2 and 3, respectively. 

However, it is too difficult to determine &(A, p) for the given d(A, p) because 
Ah(& p)  are not the eigenvalues of the R ( A ,  p). So we start to construct, from the 
reduction relations the forms for b?(A, p; x) in section 2. 
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